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ABSTRACT 
 
BLOWFISH is a fast cryptographic software algorithm, using the operations of addition, XOR and look-up tables.  
This paper reports on the design of a hardware implementation for greater speed, with pipelining and different bit-
widths of registers and processing units.  An 8-bit parallel data-path gives the best performance, mapping into 4 
independent 8-bit modules, with a throughput at least 4 times greater than with 32-bit hardware.  The design is 
suitable for implementation using small amounts of RAM and programmable logic. 
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1.0 INTRODUCTION 
 
As we move into the twenty-first century, we see information processing and the telecommunication revolution 
continuing to grow very rapidly.  The techniques of cryptography are essential for keeping information secret, for 
determining that information has not been tampered with and for controlling access to pieces of information [1].  
Encryption is the transformation of data into a form unreadable by anyone without a secret decryption key [2], in 
order to ensure privacy.  The information is hidden from anyone for whom it is not intended, even from those who 
can see the encrypted data.  For example, one may encrypt files on a hard disk to prevent an intruder from reading 
them.  Encryption also allows secure communication over an insecure channel.  In a secure cryptosystem, the 
plaintext cannot be recovered from the ciphertext except by using the decryption key [2].  In a symmetric 
cryptosystem, a single key serves for encryption and decryption.  The process is shown in Fig. 1. 
 
1.1 The Blowfish Algorithm 
 
Blowfish is a 64-bit block cipher presented by Bruce Schneier [3]: a software programmed in C, and is a suggested 
replacement for DES (Data Encryption Standard).  DES was the standard cryptographic algorithm for more than 19 
years, but it is now accepted that its key size is too small for present usage [4]. 
 

 
 

Fig. 1: Encryption and decryption 
 
Blowfish is a fast algorithm and can encrypt data on 32-bit microprocessors at a rate of one byte every 26 clock 
cycles [5].  The algorithm is compact and can run in less than 5K of memory.  It has a variable-length key block 
cipher of up to 448 bits.  Although a complex initialisation phase is required, the encryption of data is very efficient 
on microprocessors.  It suits applications where the key does not change often, for example, a communication link 
or automatic file encryptor. 



Optimal Datapath Design for a Cryptographic Processor: The Blowfish Algorithm 

17 

1.3 The Potential of Hardware Implementation 
 
There is a trend to produce software of designs of data encryption algorithms for the purpose of designer’s 
understanding and debugging, but eventually to put them into hardware for maximum speed and increased security.  
Even though software implementation can be optimised using assembler code, the result is still slow compared with 
hardware implementations.  For example, a software implementation of IDEA (International Data Encryption 
Algorithm) on a Sun SPARC2 workstation encrypts data at 400 Kbps, while a VLSI implementation of the same 
algorithm encrypts data at 177 Mbps, some 450 times faster [6]. 
 
1.4 Outline of Paper 
 
The next section of this paper describes in detail the Blowfish algorithm.  In its original form, it requires 32-bit 
processing.  Section 3 describes how the algorithm is decomposed and reconstructed with smaller word sizes to find 
the best performance in terms of speed, and the implementation of the appropriate design using a pipeline method.  
Section 4 describes how the algorithm is mapped into 4 modules using scheduling and allocation techniques, tested 
and verified by simulation.  The final section reviews the projected performance of the design and discusses 
potential applications and future work. 
 
 
2.0 ANALYSIS OF THE BLOWFISH ALGORITHM 
 
Blowfish is a symmetric block cipher that encrypts data in 8-byte (64-bit) blocks [3].  The algorithm has two parts, 
key expansion and data encryption.  Key expansion consists of generating the initial contents of one array (the P-
array), namely, eighteen 32-bit sub-keys, and four arrays (the S-boxes), each of size 256 by 32 bits, from a key of at 
most 448 bits (56 bytes).  The data encryption uses a 16-round Feistel Network [7, 8].  This type of network dates 
from the early 70s [9, 10]. 
 
2.1 The Feistel Structure  
 
Fig. 2 shows a block diagram of an algorithm with the Feistel structure for encryption, with 16 rounds of confusion 
and diffusion [11].  Mathematically the functions can be expressed as below: 
 

Take a block of 64 bits and divide it into two equal halves: L and R.  Then define the iterated block 
cipher when the outputs Li and Ri of the i'th round are determined from the outputs Li-1 and Ri-1 of the 
previous round: 
 Li = Li-1 
 Ri = Li-1 ⊕ F (Ri-1, Ki),  
where Ki is the sub-key used in the i'th round and F is specific to the particular algorithm. 

 
The main feature of this construction is that it is reversible [12], in that the same network (with the same keys 
accessed in the reverse order) is used both for encryption and decryption.  A Feistel-type network is not only used in 
Blowfish but it is also the basis of DES [13], and is used in many other cryptographic algorithms such as LOKI, 
GOST, FEAL, Lucifer, Khufu and Cast. 
 
2.2 The F Function of Blowfish 
 
The F Function, regarded as the primary source of algorithm security [3], combines two simple functions: addition 
modulo two (XOR) and addition modulo 232. 
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Fig. 2: Structure of Blowfish 
 
Fig. 3 illustrates the F Function.  Clearly, no complex mathematical process is involved, unlike exponentiation 
(modulo N) in RSA for example [14], but the mixture of the algebraically dissimilar types of operation makes 
inversion without knowledge of the key very difficult.  The only additional operations are four indexed array data 
lookups per round. 
 

 
Fig. 3: F-function 

 
The F function is the kernel and distinguishing feature of Blowfish [5], and is applied as follows: 
 

Divide XL (32 Bits) into four 8-bit quarters: a, b, c, and d.  Then: 
 
F(XL)={(S1[a] + S2[b]) ⊕ S3[c]} + S[d] )}, 
 
where  + means addition modulo 232 , and 
           ⊕  means exclusive OR, i.e. XOR 
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S1[a], for example, means the content of S-box 1 at address a.  The addresses a, b, c and d are 8-bits wide, while the 
S-box outputs are 32-bits wide.  The process of data encryption can be described as in the pseudocode below: 

 
Divide X into two 32-bit halves XL and XR 

For i=1 to 16: 
            XL = XL ⊕  Pi 
            XR = F(XL) ⊕  XR 
            Swap XL and XR 
Endfor 

Swap XL and XR  (Undo the last swap.) 
XR = XR ⊕  P17 
XL = XL ⊕  P18 

Recombine XL and XR 
Output X (64-bit data block: ciphertext) 

 
For decryption, the same process is applied, except that the sub-keys Pi must be supplied in reverse order.  The 
nature of the Feistel network ensures that every half is swapped for the next round (except, here, for the last two 
sub-keys P17 and P18). 
 
2.3 Speed and Area Factors 
 
In each F function, there are two 32-bit additions.  Since the F function loop is iterated 16 times for a block of data 
encryption, the additions are repeated 32 times.  Not only does this arithmetic make the whole algorithm potentially 
very slow, but also 32-bit adders would require a large silicon area.  Also, in the most obvious implementation, 
computation has to wait for the current process to finish before it can proceed to the next stage.  For example, the 
first stage addition in the F function has to finish before the XOR function can be done.  Similarly, the second 
addition cannot be executed until the previous XOR function is completed. 
 
The iterations must remain at 16 rounds to ensure the security of the algorithm [5].  Thus, any speed-up requires a 
deeper analysis of the algorithm. 
 
 
3.0 HARDWARE ANALYSIS  
 
Pipelining is a well-known technique for improving the throughput of computers [15], by using parallel elements so 
that several instructions can be worked on simultaneously.  The basic idea of pipelining is to begin carrying out a 
new instruction before execution of an old one is completed.  When pipelining is used, the number of steps in the 
basic algorithm is less important than fitting the steps into a framework so that they can be performed in parallel 
[16]. 
 
Fig. 4 sets out one way of pipelining Blowfish, where the data are broken into two halves (High and Low). 
 

 
 

Fig. 4: Implementing pipelining with two parallel streams  
 
These are processed separately (with delayed arithmetic carries – shown in the figure as carry) and then combined at 
the end of processing.  Even though more clock cycles are needed, the speed of the clock can be greatly improved, 
because smaller adders are required at each stage, with smaller internal propagation delays.  Note that the increase of 
speed requires an increase in silicon area, as registers are required to store intermediate results. 



Ali and Noras 

 20 

3.1 Scheduling and Allocation 
 
The Blowfish system architecture has been analysed and designed using two interdependent procedures, scheduling 
and allocation.  Scheduling is the process of assigning datapath operations to available time periods, and allocation 
is the association or binding of datapath operations to particular hardware resources.  Different scheduling and 
allocation strategies can have significant effects upon the performance and hardware requirements of designs [17]. 
 
3.2 Different Word Size Processing 
 
Processing for different word sizes has to be analysed to see the possibility of pipeline implementation of the design.  
Initially, the 32-bit level, which is used in the software version, is analysed. 
 
3.2.1 32-bit Processing 
 
The original software version uses 32-bit level processing.  There are two different methods for implementation in 
32-bit level processing: parallel and serial. 
 
3.2.1.1 Parallel 
 
The first method is by parallel implementation of the F function, so that the F function in each round together with 
the XOR in XR, will require just one clock cycle, with no register to store intermediate results. 
 
Fig. 5 shows the required configuration, which would require two 32-bit adders and two 32-bit XOR gates, and 
hence, a large area of silicon.  Also, the clock would be slow since each 32-bit adder will have 32 levels of 
propagating carry, with propagation delays according to the type of adder used [18]. 
 

 
 

Fig. 5: Implementation of the F-function 
 
A second approach is to compute the F function serially, i.e. every operation in a different clock cycle.  In this 
approach, a 32-bit register is required to store the previous partial operation.  This method requires six clock cycles 
for each round of F function.  The critical timing diagram for this approach is shown in Fig. 6. 
 

 
 

Fig. 6: Critical timing for F function computed serially 
 
A 32-bit adder/XOR is also required for this approach.  The total time required to encrypt a block of data with a 16 
round Feistel network will be 114 clock cycles: 
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6 (cycles for each F function)  
times 16 (for each round of encryption) = 96 
 
+18 (1 clock cycle for each XOR  

with the P Arrays) = 18 
 

=  total of 114 clock cycles. 
 
Table 1 shows the datapath for 32-bit processing.  Blank boxes are unused (or wasted) states.  However, since the 
longest process is 32-bit addition, the clock period has to be long enough to enable the propagation delay on the 
adder. 
 

Table 1: Datapath for 32-bit processing 
 

Clock P  array 
XOR 

Sbox 
Reading 

Addition XORing Addition XORing 
with xR 

1 P1 ⊕ xL1      

2  a1,b1,c1,d1     

3   a1+b1=ab1    

4    ab1+c1=abc1   

5     abc1+d1=Fout1  

6      Fout1 ⊕ xR1=xL2 

7 P2 ⊕ xL2      

8  a2,b2,c2,d3     

9   a2+b2=ab2    

10    ab2+c2=abc2   

11     abc2+d2=Fout2  

12      Fout2 ⊕ xR2=xL3 

13 P3 ⊕ xL3      

14  a3,b3,c3,d3     

 
In both the parallel and the serial approach, it is observed that the 32-bit addition influences the period of clock 
cycle and as a result slows down the speed of processing.  Also, we have seen there is no possibility of 
implementing pipelining in the process.  This is because the next round of the Feistel network cannot start before the 
last stage of the previous process finishes. 
 
3.2.2 16-bit Processing 
 
The 32-bit word processing could be broken into 16-bit level processing.  In this level, the idea of pipelining can be 
implemented.  All the 32-bit words have to be broken into 16-bit words, so this resembles the system shown in Fig. 
4.  This approach will take six clock cycles to process a 16-bit word as in the 32-bit level.  The next 16-bit word will 
be processed in parallel, delayed by one clock cycle.  However, before the end of the second 16-bit word process, 
the third 16-bit word processing can start.  Therefore, the same number of clock cycles as in the 32-bit level will be 
required. 
 
Since the addition is only 16-bit, the propagation delay caused by the propagating carry will be less than the 32-bit 
propagation delays.  As a result, the clock speed can be faster and consequently the total processing time will be 
less, approximately half that of the 32-bit level.  However, analysis of the data flow diagram shows that the 
proportion of unused states to used states is large.  Moreover, 16-bit addition has still has a slow propagating carry.  
Thus, we continue to consider the 8-bit level. 
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3.2.3 8-bit Processing 
 
At this level, all the processing words are 8-bit.  By breaking down to byte level, there are more chances to fill the 
pipeline densely.  This approach will also take six clock cycles for processing an 8-bit word.  The next three 8-bit 
data will be processed in parallel, each delayed one clock cycle from the previous level.  Table 2 shows the dataflow 
for 8-bit processing.  Even though the first round takes a total of ten clock cycles, the next round will only take six 
clock cycles as in 32-bit and 16-bit designs. 
 

Table 2: Datapath for 8-bit processing 
 

Clock P  array 
XOR 

Sbox 
Reading 

Addition XORing Addition XORing 
with xR 

1 P11 ⊕ 
xL11 

- - - - - 

2 P12 ⊕ 
xL12 

a11, a12, 
a13, a14 

 - - - 

3 P13 ⊕ 
xL13 

b11, b12, 
b13, b14 

a11+0,a12+0, 
a13+0,a14+0 

- - - 

4 P14 ⊕ 
xL14 

c11, c12, 
c13, c14 

A11+b11 
=ab11 &cr11'' 

- - - 

5 - d11, d12, 
d13, d14 

a12+b12+cr11''  
=ab12 &cr12'' 

ab11 ⊕ c11 
=abc11 

- - 

6 - - a13+b13+cr12'' 
=ab13 &cr13'' 

ab12 ⊕ c12 
=abc12 

abc11+d11 
=abcd11+cr11' 

- 

7 - - a14+b14+cr14'' 
=ab14 

ab13 ⊕ c13 
=abc13 

abc12+d12+cr11' 
=abcd12 

abcd11 ⊕ xR11 
=xL21 

8 P21 ⊕ 
xL21 

- - ab14 ⊕ c14 
=abc14 

abc13+d13+cr12'  
=abcd13 

abcd12 ⊕ xR12 
=xL22 

9 P22 ⊕ 
xL22 

a21, a22, 
a23, a24 

- - abc14+d14+cr13' 
=abcd14 

abcd13 ⊕  xR13 
=xL23 

10 P23 ⊕ 
xL23 

b21, b22, 
b23, b24 

a21+0,a22+0, 
a23+0,a24+0 

- - abcd14 ⊕ xR14 
=xL24 

11 P24 ⊕ 
xL24 

c21, c22, 
c23, c24 

A21+b21 
=ab21 &cr21'' 

- - - 

12 - d21, d22, 
d23, d24 

a22+b22+cr21'' 
=ab22 &cr22'' 

ab21 ⊕ c21 
=abc21 

- - 

13 - - a23+b23+cr22'' 
=ab23 &cr23'' 

ab22 ⊕ c22 
=abc22 

abc21+d21 
=abcd21+cr21' 

- 

14 - - a24+b24+cr24'' 
=ab24 

ab23 ⊕ c23 
=abc23 

abc22+d22+cr21' 
=abcd22 

abcd21 ⊕ xR21 
=xL31 

 
However, the processing time will be faster since all the logic will be 8-bit, including the additions, where the 
maximum carry will only propagate through eight stages of an adder.  This will make the whole process at least 4 
times faster than the 32-bit level, but 8-bit processing has additional advantages over 32-bit and 16-bit because 
routing will be less congested, making the hardware design faster and smaller. 
 
This design will be analysed in detail and will be further modified to give its best performance. 
 
3.3 Modification of the Feistel Network 
 
In the original Feistel network, the output of the F function is XORed with XL before XORed with the next P array.  
For example, the output of the F function from stage one, Fout1, is XORed with XL then XORed with P2.  This 
means the P array XORing cannot take place before the output of the F function appears.  However, the processing 
time can be faster if the XORing with the P arrays is performed while the F function is still being evaluated.  For 
this, we have to modify the Feistel network so that the XORing with the next P array is performed before the output 
of the F function appears.  This is possible because XORing is commutative: 
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A ⊕  B ⊕  C   = A ⊕  C ⊕  B 
 
Another modification is to add a dummy function Fout01.  The reason for this is to make the algorithm looks 
identical from the first round till the final round.  This will make the decryption process, which takes the key in 
reverse order, much easier.  An extra hardware requirement for the modified version is the addition of a few extra 
registers to keep the value of the previous stage’s outputs for use in the next stage. 
 
3.4 Combining S-boxes 
 
From the datapath in Table 2, we can see that only one S-box is being read at each clock cycle.  These  S-boxes 
contain 256 locations each identified by different addresses, thus 1024 locations in total, each location being a 32-bit 
word.  Therefore, these S-boxes can be combined into a RAM with 1024 locations.  This will make the design easier 
as we do not have to control each RAM separately.  The block diagram of the simplified system is shown in Fig. 7. 

 
Fig. 7: 8-bit processing in modified structure 

 
3.5 Datapath and Reducing the Number of Registers 
 
After combining the S-boxes and modifying the Feistel Network, data flow analysis is repeated to see the new 
datapath.  Table 3 shows the modified data flow.  We can see that the efficiency of hardware is increased since the 
unused states decrease.  Finally, we note that not all registers are used all the time, so that the number of the 
registers can be reduced at every stage except for the final one.  For the first level, only one register is needed since 
only one byte of data, at maximum, is kept in any clock cycle.  For the second level, two registers are needed, and 
three for the third level.  The final level registers cannot be reduced since there are 4 registers used in maximum at 
certain clock cycles.  The total number of the registers used is decreased from 16 registers to 10 registers. 
 
 
4.0 IMPLEMENTATION 
 
Best performance in terms of speed and hardware efficiency is given by 8-bit processing.  Thus, the hardware 
configuration at this level was analysed before the integration for complete system. 
 
An initial attempt to map to hardware suggests the following sequence of operations.  Firstly, the P Array is XORed 
with the XR (right half of the data) and the result is XR’.  Then XR’ is XORed with the output of the accumulator 
(Fout) from the previous clock cycle.  The result is then fed into RAM that will act as the RAM addressing values.  
A copy of these values is kept in the register to be used for subsequent rounds.  The output of the RAM is kept in 
registers before it is fed into ADDER1 together with the carry from the previous module.  The process continues 
with XORing, and lastly , addition using ADDER2.  This cycle then continues for the successive rounds. 
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Table 3: Modified datapath for 8 -bit processing 
 

Clock P  array 
XOR 

XORing 
with xR 

Sbox 
Reading 

Addition XORing Addition 

1 P11 ⊕ xL01 
=xL11=xR21' 

- - - - - 

2 P12 ⊕ xL02 
=xL12=xR22' 

Fout01 ⊕ xR21' 
=xR21 

- - - - 

3 P13 ⊕ xL03 
=xL13=xR23' 

Fout02 ⊕ xR22' 
=xR22 

a11, a12, 
a13, a14 

- - - 

4 P14 ⊕ xL04 
=xL14=xR24' 

Fout03 ⊕ xR23' 
=xR23 

b11, b12, 
b13, b14 

a11+0,a12+0, 
a13+0,a14+0 

- - 

5 - Fouto4 ⊕ xR24' 
=xR24 

c11, c12, 
c13, c14 

a11+b11 
=ab11 &cr11'' 

- - 

6 - - d11, d12, 
d13, d14 

a12+b12+cr11'' 
=ab12 &cr12'' 

ab11 ⊕ 
c11=abc11 

- 

7 P21 ⊕ xR11 
=xR11' 

- - a13+b13+cr12'' 
=ab13 &cr13'' 

ab12 ⊕ 
c12=abc12 

abc11+d11 
=Fout11 +cr11' 

8 P22 ⊕ xR12 
=xR12' 

Fout11 ⊕ xR11' 
=xL21=xR31 

- a14+b14+cr14'' 
=ab14 

ab13 ⊕ 
c13=abc13 

abc12+d12+cr11' 
=Fout12+ cr12' 

9 P23 ⊕ xR13 
=xR13' 

Fout12 ⊕ xR12' 
=xL22=xR32 

a21, a22, 
a23, a24 

- ab14 ⊕ 
c14=abc14 

abc13+d13+cr12' 
=Fout13+ cr13' 

10 P24 ⊕ xR14' 
=xR14' 

Fout13 ⊕ xR13' 
=xL23=xR33 

b21, b22, 
b23, b24 

a21+0,a22+0, 
a23+0,a24+0 

- abc14+d14+cr13' 
=Fout14 

11 - Fout14 ⊕ xR14' 
=xL24=xR34 

c21, c22, 
c23, c24 

a21+b21 
=ab21 &cr21'' 

- - 

12 - - d21, d22, 
d23, d24 

a22+b22+cr21'' 
=ab22 &cr22'' 

ab21 ⊕ 
c21=abc21 

- 

13 P31 ⊕ xR21 
=xR21' 

- - a23+b23+cr22'' 
=ab23 &cr23'' 

ab22 ⊕ 
c22=abc22 

abc21+d21 
=Fout21+cr21' 

14 P32 ⊕ xR22 
=xR22' 

Fout21 ⊕ xR21' 
=xL31=xR41 

- a24+b24+cr23'' 
=ab24 

ab23 ⊕ 
c23=abc23 

abc22+d22+cr21' 
=Fout22+ cr22' 

 
However, the design can be simplified by using the same hardware block for multiple functions.  The following 
functions are performed in different clock cycles: 

 
1. addition in ADDER1, 
2. XOR with output from ADDER1 and Register, 
3. addition in ADDER2, and 
4. XOR between first XOR and Fout. 

 
All of these operations can be done by using just one hardware block that combines the XOR and ADD functions.  
We introduce a device called ADD/XOR, which is essentially a custom ALU.  By doing this, not only will the 
system look simpler but the area of silicon for fabricating the system will also decrease. 
 
4.1 The ADD/XOR Block  
 
Since the adder is an important factor in influencing the speed of the algorithm, it is very important to analyse the 
types of adders available.  Generally, the type of adder is determined by the way it handles the carry.  The main 
types of adders are Ripple Carry Adder and Look Ahead Carry Adder. 
 
4.1.1 Ripple Carry Adder 
 
Ripple carry adders are adders where the carry output of each full-adder [19] is connected to the carry input of the 
next higher-order stage.  The sum and carry of any successive stage are not stable until all previous carries have 
occurred, which lead to time delay in the addition process.  For an adder of length more than a very few bits, this 
delay is likely to be unacceptable. 
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4.1.2 Carry-lookahead 
 
One method of eliminating this ripple carry delay is called carry-lookahead.  This method is based on two functions 
of the full-adder, called the carry-generate and carry -propagate functions [19].  Carry-generate is expressed as an 
AND function and carry-propagate is expressed as an OR function.  Using this method, the carry does not propagate 
through all the adders but passes through the AND and OR gates, which are built using the concept of carry 
propagate and carry generate.  The trade-off for this method is increased area and complexity.  Thus, the method is 
not extendable indefinitely to very long adders, as the complexity, and hence, propagation of the additional logic 
increases.  In the present case, it would be unfeasible to build 16-bit or 32-bit adders, although the method is ideal 
for an 8-bit system. 
 
4.1.3 Combining XOR and Adder Functions 
 
The adder circuit can be modified into the ADD/XOR device in the system.  Consider a 2-stage adder [19].  The 
Boolean equation for digit 1 of the addition is: 
 

i’th stage  ∑i =Ai  ⊕  Bi  ⊕  Cin_1 
 
If the incoming carry is ignored, then the result will be only the XOR function between numbers A and B, so the 
modified adding equation needed to implement the F function would be: 
 

i’th stage  ∑i =Ai ⊕   Bi ⊕  (Cin_1  & mode) 
 
Here, & means Boolean AND.  Clearly, if mode = 0 for all the stages, then, ∑ = A ⊕ B.  In this way, the adder 
circuit can be modified into an ADD/XOR device.  Since we are using the same device for different functions we 
need to introduce a register that will act as an accumulator to hold data from the previous stage before feeding it to 
the next stage.  Fig. 8 shows the block diagram of this combined structure. 
 
If mode = 1: ADD/XOR functions as an adder 
If mode = 0: ADD/XOR functions as a bank of XOR gates. 
  

 
Fig. 8: Combined adder and accumulator 

 
Fig. 9 shows the modified hardware configuration for 8-bit processing with the ADD/XOR included. 
 

 
Fig. 9: Hardware configuration for 8-bit processing 
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4.2 Mapping the System 
 
The complete system is mapped into 4 independent modules that are linked by the RAM and the carries, with the P 
array split into different sections.  This is possible since the P array has its own addressing and can be divided for 
each module.  No modification is required for other parts of the design since all other processing is 8-bit. 
 
4.3 Throughput Estimation 
 
Exact throughput can be obtained only when the complete system is mapped into a particular technology.  However, 
it is useful to obtain estimates, using the speed of clock cycle as presented by Sommerville [20].  The 32-bit level 
needs 144 clock cycles to encrypt 64 bits of data [see section 3.2.1.1].  For the 8-bit level, the number of clock 
cycles is also 144.  However, since the processing will be 8-bits rather than 32-bits, latency, which is the measure of 
processing rate [21], will be at least 4 times less than the 32-bit version.  This is because there is less propagating 
carry in the adders (even when using carry-lookahead).  Also, there will be less routing complexity, whether using 
VLSI or programmable logic. 
 
 
5.0 CONCLUSION 
 
Although Blowfish is a fast encryption algorithm, hardware implementation can make the system throughput much 
higher.  After validating the design by extensive simulation, we made provisional mapping of the to Xilinx 
programmable logic FPGAs, to show that the complexity of design can be accommodated with this technology, 
using off-chip RAM for highest performance.  This is an important practical consideration, since it allows security 
hardware to be built into digital systems without the expense of VLSI design and fabrication, and to permit design 
upgrades at low cost. 
 
The paper proves the feasibility of a pipelined hardware implementation of Blowfish. Pipelining can be 
implemented in 16-bit and 8-bit sizes with the latter offering greater linearity.  An 8-bit system appears promising 
because of speed enhancement with little expansion of silicon area.  The predicted throughput is at least 4 times 
greater than the original 32-bit version. 
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