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Abstract  
 
Classical linear regression model assumes that there is no multicollinearity among 
the explanatory variables in a regression model. Contrary to this assumption, where 
multicollinearity is perfect, the regression coefficients of the explanatory variables 
are indeterminable and their standard errors are infinite. On the other hand, where 
multicollinearity is less than perfect, the regression coefficients, although 
determinable, possess large standard errors. This implies that the coefficients 
cannot be estimated with great precision. Hence multicollinearity problem is a 
major problem in econometric analysis.  Using Monte Carlo Simulation, we 
evaluated the asymptotic efficiency of six estimators (OLS, ILS, 2SLS, 3SLS, 
LIML and FIML), under different magnitudes of the unintended linear relationship 
between the exogenous variables. Using the SSR criteria, we found that OLS 
followed by ILS turned out the best estimates amongst the six estimators under 
multicollinearity. We also found that with increasing sample size, there is no 
remarkable asymptotic effect in the performance of the estimators at the levels of 
multicollinearity.  
 
Keywords: Asymptotic Efficiency, Correlation, Estimators, Monte Carlo, 
Multicollinearity, Simultaneous Equation 

 
   
1. Introduction 

 
Multicollinearity or the presence of linear relationship between pairs of exogenous variables is an 
important problem in econometrics, especially in single-equation model estimation. When 
multicollinearity is present in a single equation model estimation, a common empirical solution is for a 
simultaneous equation model to be adopted, if this is admissible to theory. However, we may still be 
confronted with multicollinearity in the individual equation in the simultaneous system. If the single-
equation solution to this problem is adopted, there may be an intolerable rise in the size of the model 
with the consequent depletion of the number of exogenous variables some of which are usually included 
for the purpose of studying the effect of shocks and for policy simulation. It is a common practice for 
researchers, especially when undertaking Monte Carlo studies to resort to the use of randomly generated 
values of exogenous variables.  The values obtained are invariably not examined for multicollinearity 
before they are used in such studies. Hence, many researchers make the potentially wrong assumption 
that the randomly generated values are uncorrelated.  The results generated on the assumption they are 



Oduntan/https://doi.org/10.22452/josma.vol5no2.1         Vol 5(2), 1-10. 2023 
 

2 
 

inherently orthogonal, may be misleading.  Where the variables are correlated, the multicollinearity 
problem may occur. In view of the possibility of multicollinearity problem affecting results from such 
studies, inferences drawn from them may be impaired.  Consequently, the conclusions based on such 
results may be misleading. 

In this paper, we considered the comparative efficiency of six estimators under two different 
magnitudes of the unintended correlation between the exogenous variables using the Monte Carlo 
approach. Furthermore, the interest of researchers in Monte Carlo studies may be the analysis of the 
performance of estimators with increasing sample size with a view to validating the asymptotic 
efficiency of parameter estimates. The asymptotic efficiency of the estimators under multicollinearity 
is also studies. 

Consider the Ordinary Least Square (OLS) estimator is given as: 

b = (X1X)-1 X1y            

and its variance matrix is: 

Var(b) = σ2 (X1X)-1 

The sampling variances Var(b) depend not only on the error variances σ2, but also on the sample 
values of explanatory variables. Where the explanatory variables are non-orthogonal, the correlation 
between them will be high. In such a case, the numerical values of the off-diagonal terms will be high. 

When the explanatory variables are orthogonal, the coefficients of the X’s in the multiple 
regression equation would be the same as those given by the sample regression of Y on each X in turn. 
Orthogonal variables may be set up in experimental designs but such variables are not common in 
economic data. Increasing correlation between two explanatory variables will results in an increased of 
numerical values for the off-diagonal terms as well as a dramatic fall in the value of the determinant. 
This is described as a situation of multicollinearity between the explanatory variables.  

Monte Carlo methods are commonly used in studying the small sample properties of estimators. 
In a given study, they are applicable in the determination of the impact of multicollinearity, serial 
correlation, sample size, choice amongst alternative estimators, etc., on the different estimators, Wagner 
(1958), Balder Raj (1980), Kloek and Dijk (1978), Kmenta and Joseph (1963), Nagar (1960), Carlin et 
al (1992). Monte Carlo approach provides a “laboratory environment” for performing controlled 
experiments on estimators.  

Pingel and Waernbaum (2015) in their study on how the asymptotic efficiency of matching and 
inverse probability weighting estimators for average causal effects change when the covariates are 
correlated, stated that “correlation can both increase and decrease the large sample variances of the 
estimators and that the correlation affects the asymptotic efficiency of the estimators differently with 
regards to its magnitude and direction”. Studying relative asymptotic efficiency of estimators for non-
linear time series, Amano (2009), found that through numerical analysis, for important nonlinear time 
series models, e.g. GARCH, RCA, non-linear AR models, the asymptotic variance of the G estimator 
proposed by Chindra and Taniguchi (2001) is smaller than that of the conditional least squares (CLR) 
estimators. Grobler (2018) considered the effect of the choice of weight function on the efficiency of 
the empirical characteristic function (ECF) estimator. He analyzed the asymptotic efficiency relative 
(ARE) to maximum likelihood estimators of estimators using a weight function that is either a normal 
density or a mixture of two normal densities. The study results indicate that ARE is sensitive to the 
choice of weight function. 

In their paper on Asymptotic Efficiency of Maximum Likelihood Estimators Under 
Misspecified Models, Ghosh and Sing (2012) illustrates when and how maximum likelihood estimators 
continue to be asymptotically efficient under mis-specified models. They also provided necessary and 
sufficient conditions under which a subset of the vector of MLE’s retains its asymptotic efficiency under 
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misspecified models where the MLE itself is not fully asymptotically efficient. Also, Lahiri, Lee and 
Cressie (2002), investigated the efficiency of different least squares variogram-parameter estimators in 
large samples. They posited that “when the number of lags used to define the estimates is chosen to be 
equal to the number of variogram parameter to be estimated, the ordinary least squares, the weighted 
least squares and the generalized least squares estimators are all asymptotically efficient”. Chambers 
(2003) examined the effects of temporal aggregation on the asymptotic variance of estimates in 
cointegrated systems. The study found that estimators based on flow data alone are more efficient than 
when the data are all stocks and flows. The study further revealed that estimators based on flow data are 
as efficient as when the data are recorded continuously. Also, Emanuele Dolera, (2022), examined the 
asymptotic efficiency of point estimators in Bayesian Predictive Inference. 

Amano and Taniguchi (2008), from the standpoint of the conditional least squares (CL) 
estimators proposed by Tjistheim (1986) which are not asymptotically efficient in general, developed a 
necessary and sufficient condition that CL is asymptotically efficient based on the local asymptotic 
normality (LAN) approach. Aoki, Bolfarine and Singer (2002) considered measurement error regression 
models with null intercepts. They derived explicit method of moment estimators (MME) under models 
with increasing complexity and also evaluated their asymptotic relative efficiencies with respect to the 
corresponding maximum likelihood estimators (MLE). They identified cases where the MME may be 
considered as substitutes of the MLE. Takeuchi and Akahira (2003) stated that “the maximum likelihood 
estimation (MLE) is a third order asymptotically efficient in multi-parameter exponential cases”. Other 
related studies are Wilson (2011), Marlin and Nando de Freitas (2012), Li and Fearnhead (2018), Janon 
et.al. (2014), Ermakov (2012), and Wilson (2012)]. 

In this study we evaluated the performance and asymptotic efficiency of six estimation methods 
under positive multicollinearity using Monte Carlo Simulation. The rest of the paper is organized into 
three sections. Section 2 presents the Materials and Methods of the study. The findings from our Monte 
Carlo experiment are presented in Section 3 while Section 4 is the conclusion. 
 
2. Materials and Methods   

 
We adopted the Monte Carlo simulation strategy used by Oduntan and Iyaniwura (2021). This is 
presented below.  
 
2.1 Theoretical Framework 

 
Consider 

Y = F(X, θ) + u                                                          (1) 

where Y is the vector of endogenous variables, X is the vector of the exogenous variable, θ is the vector 
of the structural parameters and u is the vector of the disturbance terms.  𝒖𝒖 ~ 𝑁𝑁(0, 𝜎𝜎2)   and vector 𝜽𝜽  
as well as the variance 𝜎𝜎2 are assigned numerical values. Normal deviates are selected on the basis of 
the assumed 𝜎𝜎2, and used in generating error terms 𝒖𝒖. We selected a random sample of size 𝑇𝑇 for 𝑿𝑿 and 
computed the numerical values of F(X, θ). Computing Y = F(X, θ) + u, we obtained vector Y 

Estimate 𝜽𝜽� of 𝜽𝜽 is obtained by performing the regression of 𝒀𝒀 on 𝑿𝑿 . Replicating this procedure 
several times in order to facilitate the construction of the sampling distribution of 𝜽𝜽�. We used the 
empirical distribution through this procedure in evaluating the precision of 𝜽𝜽� as well as comparisons of 
the performance of different estimators of  𝜽𝜽. 
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2.2 Empirical Strategy 
 

Consider, 

𝑦𝑦1𝑡𝑡  =  𝛽𝛽12𝑦𝑦2𝑡𝑡 +  𝛾𝛾11𝑋𝑋1𝑡𝑡 +   𝛾𝛾12𝑋𝑋2𝑡𝑡 +  𝑢𝑢1𝑡𝑡    

𝑦𝑦2𝑡𝑡 =  𝛽𝛽21𝑦𝑦1𝑡𝑡 +  𝛾𝛾22𝑋𝑋2𝑡𝑡 +   𝛾𝛾23𝑋𝑋3𝑡𝑡 + 𝑢𝑢2𝑡𝑡                          (2) 

where 𝑦𝑦′𝑠𝑠 are the endogenous variables,  𝑥𝑥′𝑠𝑠 are the exogenous variables and 𝑢𝑢′𝑠𝑠 are the disturbance 
terms. In matrix form equation 2 becomes: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 +  𝒖𝒖  

where 𝒚𝒚 =  �
𝑦𝑦1
𝑦𝑦2� ,𝑿𝑿 =  �

1 1 1
𝑋𝑋1 𝑋𝑋2 𝑋𝑋3
1 1 1

� ,𝑿𝑿 =  

⎣
⎢
⎢
⎢
⎡
𝛽𝛽1
𝛽𝛽2
𝛾𝛾1
𝛾𝛾2
𝛾𝛾3⎦
⎥
⎥
⎥
⎤

 and 𝒖𝒖 =  �
𝑢𝑢1
𝑢𝑢2�.  

A linear simultaneous equation econometric model containing 𝐾𝐾 predetermined variables 
𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘 ,  and 𝐺𝐺 endogenous variables 𝑦𝑦1, … , 𝑦𝑦𝐺𝐺  ,  the 𝐺𝐺 structural equations at time 𝑡𝑡  may, be 
expressed as: 

𝛽𝛽𝑖𝑖1𝑦𝑦1𝑡𝑡 +  𝛽𝛽𝑖𝑖2𝑦𝑦2𝑡𝑡 +  … … + 𝛽𝛽1𝐺𝐺𝑦𝑦𝐺𝐺𝑡𝑡 + 𝛾𝛾𝑖𝑖1𝑥𝑥1𝑡𝑡 … … + 𝛾𝛾𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘𝑡𝑡 =   𝜐𝜐𝑖𝑖𝑡𝑡     

𝑖𝑖 = 1, 2 … . . . ,𝐺𝐺,     𝑡𝑡 = 1, 2 … . ,𝑛𝑛                              (3)  

Equation 3 can be rewritten as: 

𝑩𝑩𝒚𝒚𝑡𝑡 +  𝚪𝚪𝑋𝑋𝑡𝑡 =  𝒖𝒖𝑡𝑡                                         (4) 

where 𝚪𝚪 is a 𝐺𝐺 𝑏𝑏𝑦𝑦 𝐾𝐾 matrix of coefficient of predetermined variables 𝑦𝑦𝑡𝑡 ,  𝑩𝑩 is a 𝐺𝐺 𝑏𝑏𝑦𝑦 𝐺𝐺  matrix of 
coefficients of current endogenous variables, with 𝑿𝑿𝑡𝑡  and 𝒖𝒖𝑡𝑡 being column vectors of 𝐺𝐺 and 𝐾𝐾 elements 
respectively. 

𝑩𝑩 =  �

𝛽𝛽11 𝛽𝛽12 … 𝛽𝛽1𝐺𝐺
𝛽𝛽21 𝛽𝛽22 … 𝛽𝛽2𝐺𝐺...
𝛽𝛽𝐺𝐺1 𝛽𝛽𝐺𝐺2 … 𝛽𝛽𝐺𝐺𝐺𝐺

�,   𝚪𝚪 =  �
𝛾𝛾11 𝛾𝛾21 … 𝛾𝛾1𝐾𝐾
𝛾𝛾21 𝛾𝛾22 … 𝛾𝛾2𝐾𝐾...
𝛾𝛾𝐺𝐺1 𝛾𝛾𝐺𝐺1 … 𝛾𝛾𝐺𝐺𝐾𝐾

�,  𝒚𝒚𝒕𝒕 =  �

𝑦𝑦1𝑡𝑡
𝑦𝑦2𝑡𝑡
⋮
𝑦𝑦𝐺𝐺𝑡𝑡

�,  𝑿𝑿𝑡𝑡 =  �

𝑋𝑋1𝑡𝑡
𝑋𝑋2𝑡𝑡
⋮
𝑋𝑋𝐾𝐾𝑡𝑡

� , 𝒖𝒖𝒕𝒕 =  �

𝑢𝑢1𝑡𝑡
𝑢𝑢2𝑡𝑡
⋮
𝑢𝑢𝐺𝐺𝑡𝑡

� 

 
The assumptions about the model are: 
1. 𝒀𝒀 is expressed as a linear combination of the explanatory 𝑿𝑿 variables plus a disturbance vector.   
2. At any time 𝑡𝑡,  

𝐸𝐸(𝒖𝒖𝒕𝒕) = 0                         (5)  

3. The Variance-Covariance matrix of 𝒖𝒖 is: 

𝐸𝐸(𝒖𝒖𝒕𝒕𝒖𝒖𝒕𝒕′) =  Σ =  Ω⨂𝑙𝑙𝑛𝑛                                    (6)  
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𝐸𝐸(𝒖𝒖𝒕𝒕𝒖𝒖𝒕𝒕′) = Σ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑢𝑢11
𝑢𝑢12
⋮
𝑢𝑢1𝑛𝑛
𝑢𝑢21
⋮
𝑢𝑢2𝑛𝑛
⋮
𝑢𝑢𝐺𝐺1
⋮

𝑢𝑢𝐺𝐺𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 [𝑢𝑢11  𝑢𝑢12   …  𝑢𝑢1𝑛𝑛  𝑢𝑢21   …  𝑢𝑢2𝑛𝑛  𝑢𝑢𝐺𝐺1    …   𝑢𝑢𝐺𝐺𝑛𝑛]

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                 (7)  

The elements of the 𝐺𝐺𝑛𝑛 𝑏𝑏𝑦𝑦 𝐺𝐺𝑛𝑛 symmetric matrix in equation 7 are given by: 

  𝐸𝐸(𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝑖𝑖∗𝑡𝑡∗) =  
⎩
⎪
⎨

⎪
⎧ 𝜎𝜎𝑡𝑡

2,    𝑓𝑓𝑓𝑓𝑓𝑓   𝑖𝑖= 𝑖𝑖∗,     𝑡𝑡= 𝑡𝑡∗    (𝑎𝑎)
0,    𝑓𝑓𝑓𝑓𝑓𝑓   𝑖𝑖= 𝑖𝑖∗,     𝑡𝑡≠ 𝑡𝑡∗         (𝑏𝑏)
𝜎𝜎𝑖𝑖𝑖𝑖∗ ,    𝑓𝑓𝑓𝑓𝑓𝑓   𝑖𝑖≠ 𝑖𝑖∗,     𝑡𝑡= 𝑡𝑡∗    (𝑐𝑐)
0,    𝑓𝑓𝑓𝑓𝑓𝑓   𝑖𝑖≠ 𝑖𝑖∗,     𝑡𝑡≠ 𝑡𝑡∗         (𝑑𝑑)        

 

where, (a), (b), (c), and (d) - implies respectively, existence of homoscedasticity, absence of 
autocorrelation, covariances at the same periods are equal to 𝜎𝜎𝑖𝑖𝑡𝑡∗  , and non-contemporaneous 
covariances are zero. 

4. 𝑿𝑿  is a non-stochastic matrix with a full column rank i.e., 𝜌𝜌(𝑿𝑿) = 𝐾𝐾  
5. 𝒖𝒖 ∽  𝑁𝑁𝑁𝑁𝑁𝑁 (0, Σ)  

To obtain the reduced-form equations we solved equation 4 for 𝑦𝑦𝑡𝑡 , i.e.,  

𝑦𝑦𝑡𝑡 =  −𝛽𝛽−1Γ𝑋𝑋𝑡𝑡 + 𝛽𝛽−1𝑢𝑢𝑡𝑡 =  Π𝑋𝑋𝑡𝑡 +  𝑉𝑉𝑡𝑡   

where 𝚷𝚷 =  −β−1Γ , Vt =  β−1ut,  and (𝑉𝑉𝑡𝑡𝑉𝑉𝑡𝑡′) =  𝛽𝛽−1Σ𝛽𝛽−1 =  𝛀𝛀 .  
(𝑿𝑿,   𝚪𝚪,    𝚺𝚺)  represents the parameters of the structural equations, while (𝚷𝚷,   𝛀𝛀) are the reduced 
form equation parameters.  

𝚷𝚷 =  −𝛽𝛽−𝟏𝟏Γ  and 𝛀𝛀 =  𝛽𝛽−1Σ𝛽𝛽−1′ 

We adopted the Monte Carlo simulation strategy proposed by Oduntan and Iyaniwura (2021) to 
obtain a conformable data set. This strategy is set out as follows. 
i) Set sample size 𝑇𝑇 at 30. 
ii) Assigning arbitrary values to the structural parameters of the model, we have; 

𝛽𝛽12 = 1.8,     𝛾𝛾11 = 1.2,     𝛾𝛾21 = 0.6       

𝛽𝛽21 = 0.4,     𝛾𝛾12 = 0.5,     𝛾𝛾23 = 1.4                                (8)   

iii) Also, assigning arbitrary numerical values to  Ω   at any given sample point, we have. 

𝛀𝛀 =  �4.5 3.0
3.0 3.5�                                  (9) 

iv) From a pool of  uniformly distributed random numbers we selected the values of the 
predetermined variables 𝑋𝑋1𝑡𝑡 , 𝑋𝑋2𝑡𝑡  and 𝑋𝑋3𝑡𝑡,  such that the correlation coefficients, 
𝑟𝑟(𝑥𝑥1𝑥𝑥2), 𝑟𝑟(𝑥𝑥1𝑥𝑥3)  𝑎𝑎𝑛𝑛𝑎𝑎  𝑟𝑟(𝑥𝑥2𝑥𝑥3) are of the following magnitudes; 
(a) significant at 1% level: designated as high multicollinearity. 
(b) insignificant at 5% level: designated as low multicollinearity. 

v) We obtained 𝑢𝑢1𝑡𝑡 and 𝑢𝑢2𝑡𝑡   via the following process;  
(a) From a large collection of random normal deviates we drew independent series  𝜀𝜀𝑡𝑡~ 𝑁𝑁(0, 1), 

with the size of each pair depending on the desired sample size. 
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(b) We adopted the method proposed by Nagar (1969) to transformed the series 𝜀𝜀𝑡𝑡   into a series 
of random errors that guarantees conformity with the variance-covariance matrix Ω 
predetermined for the model.  This procedure is highlighted as follows. 
Let  𝚺𝚺 be decomposed by a matrix P as; 

 𝚺𝚺 = 𝑷𝑷𝑷𝑷/                (10) 

where 

𝐏𝐏 = �𝑆𝑆11 𝑆𝑆21
0 𝑆𝑆22

�                                (11) 

Then 

𝑆𝑆22 =  +√𝜎𝜎22     

𝑆𝑆21 =  𝜎𝜎12 𝑆𝑆22�                                   (12) 

𝑆𝑆11   = +�(𝜎𝜎11 −  𝑆𝑆212 ) 

We have the two random error series using 

𝒖𝒖 = 𝑷𝑷𝜀𝜀𝑡𝑡 =  �𝑢𝑢𝑡𝑡1𝑢𝑢𝑡𝑡2
�                        (13) 

 =  𝑷𝑷�
𝜀𝜀𝑡𝑡1
𝜀𝜀𝑡𝑡2
� 

= � 𝑆𝑆11 𝑆𝑆21
0 𝑆𝑆22

�   �
𝜀𝜀𝑡𝑡1
𝜀𝜀𝑡𝑡2� 

Hence, 

𝑢𝑢𝑡𝑡1 =  𝑆𝑆11 𝜀𝜀𝑡𝑡1 +  𝑆𝑆21 𝜀𝜀𝑡𝑡2                         (14) 

𝑢𝑢𝑡𝑡2 =  𝑆𝑆22 𝜀𝜀𝑡𝑡2 

vi) With the reduced form of the model, we generate our T endogenous variables from the values 
already obtained for the  𝑋𝑋′𝑠𝑠 and 𝑈𝑈′𝑠𝑠 and the values assigned to the structural parameters.  
For our two-equation model 

𝑦𝑦1𝑡𝑡 =  𝛽𝛽12𝑦𝑦2𝑡𝑡 + 𝛾𝛾11𝑋𝑋1𝑡𝑡 + 𝛾𝛾1𝑡𝑡𝑋𝑋2𝑡𝑡 + 𝑢𝑢1𝑡𝑡
𝑦𝑦2𝑡𝑡 =  𝛽𝛽21𝑦𝑦1𝑡𝑡 + 𝛾𝛾21𝑋𝑋2𝑡𝑡 + 𝛾𝛾2𝑡𝑡𝑋𝑋3𝑡𝑡 + 𝑢𝑢2𝑡𝑡

 

Rearranging the model, we have, 

𝑦𝑦1𝑡𝑡 −  𝛽𝛽12𝑦𝑦2𝑡𝑡 − 𝛾𝛾11𝑋𝑋1𝑡𝑡 − 𝛾𝛾2𝑡𝑡𝑋𝑋2𝑡𝑡 −  0𝑋𝑋3𝑡𝑡 = 𝑢𝑢1𝑡𝑡
−𝑦𝑦2𝑡𝑡𝑦𝑦1𝑡𝑡 +  𝑦𝑦2𝑡𝑡 −  0𝑋𝑋1𝑡𝑡 − 𝛾𝛾21𝑋𝑋2𝑡𝑡 − 𝛾𝛾23𝑋𝑋3𝑡𝑡 = 𝑢𝑢2𝑡𝑡

 

Which we rewrite as: 

𝑩𝑩𝒚𝒚𝑡𝑡 + 𝚪𝚪𝑿𝑿𝑡𝑡 = 𝑢𝑢          (15) 

where 

 𝑩𝑩 = � 1 −𝛽𝛽12
−𝛽𝛽21 1 � , 𝚪𝚪 =  �−𝛾𝛾11 −𝛾𝛾12 0

0 −𝛾𝛾21 −𝛾𝛾23
� , 𝒚𝒚𝑡𝑡 = �

𝑦𝑦1𝑡𝑡
𝑦𝑦2𝑡𝑡� ,  𝑿𝑿𝑡𝑡 = �

𝑋𝑋1𝑡𝑡
𝑋𝑋2𝑡𝑡
𝑋𝑋3𝑡𝑡

�  ,        𝒖𝒖 = �
𝑢𝑢1𝑡𝑡
𝑢𝑢2𝑡𝑡� 

Rewriting equation (15), we have 
𝒚𝒚𝑡𝑡 =  −𝑩𝑩−1𝚪𝚪𝑿𝑿𝑡𝑡 + 𝑩𝑩−1𝑢𝑢         (16) 
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= −
1

1 − 𝛽𝛽12𝛽𝛽21
� 1 𝛽𝛽21
𝛽𝛽12 1 �  �−𝛾𝛾11 −𝛾𝛾12 0

0 −𝛾𝛾21 −𝛾𝛾23
�  �
𝑋𝑋1𝑡𝑡
𝑋𝑋2𝑡𝑡
𝑋𝑋3𝑡𝑡

�+
1

1 − 𝛽𝛽12𝛽𝛽21
 � 1 𝛽𝛽21
𝛽𝛽12 1 � �

𝑢𝑢1𝑡𝑡
𝑢𝑢2𝑡𝑡� 

where 𝑩𝑩−1 = 1
1−𝛽𝛽12𝛽𝛽21

� 1 𝛽𝛽21
𝛽𝛽12 1 �. 

Thus, we have 

𝑦𝑦1𝑡𝑡 = �
𝛾𝛾11

1− 𝛽𝛽12𝛽𝛽21
 �𝑿𝑿1𝑡𝑡 + � 

𝛾𝛾12 +  𝛽𝛽21𝛽𝛽21
1 − 𝛽𝛽12𝛽𝛽21

�  𝑿𝑿2𝑡𝑡 + �
 𝛽𝛽12𝛽𝛽23

1 − 𝛽𝛽12𝛽𝛽21
�  𝑿𝑿3𝑡𝑡 + �

 𝜀𝜀1𝑡𝑡 + 𝛽𝛽21𝑢𝑢2𝑡𝑡
1 − 𝛽𝛽12𝛽𝛽21

� 

𝑦𝑦2𝑡𝑡 = � 𝛾𝛾11 𝛽𝛽21
1−𝛽𝛽12𝛽𝛽21

 �𝑿𝑿1𝑡𝑡 + � 𝛾𝛾11+ 𝛽𝛽21𝛾𝛾21
1−𝛽𝛽12𝛽𝛽21

�  𝑿𝑿2𝑡𝑡 +  �  𝛾𝛾23
1−𝛽𝛽12𝛽𝛽21

�  𝑿𝑿3𝑡𝑡 + � 𝛽𝛽12𝑢𝑢1𝑡𝑡+𝑢𝑢1𝑡𝑡
1−𝛽𝛽12𝛽𝛽21

�       (17) 

We used equation 17 to obtain the values of the endogenous variables. 

vii) Finally, we conclude the Monte Carlo experiment by estimating the structural parameters using 
the generated data sets for 𝑦𝑦1𝑡𝑡 ,𝑦𝑦2𝑡𝑡 ,𝑦𝑦3𝑡𝑡 ,𝑋𝑋1𝑡𝑡 , 𝑋𝑋2𝑡𝑡, 𝑎𝑎𝑛𝑛𝑎𝑎 𝑋𝑋3𝑡𝑡. The estimators used are ILS (Indirect 
Least Squares), OLS (Ordinary Least Squares), 3SLS (Three Stage Least Squares), 2SLS (Two 
Stage Least Squares), LIML (Limited Information Maximum Likelihood) and FIML (Full 
Information Maximum Likelihood). 
 

3. Findings 
 

Under different magnitudes of multicollinearity, we analyzed the performance of six estimators using 
the Sum of Squared Residuals (SSR) of parameter estimates. In theory, for just identified equations, the 
parameter estimates obtained via 2SLS, LIML, ILS and 3SLS should be identical, Johnston (1991) – 
our results are in agreement with this. The results of 2SLS, LIML and 3SLS yielded virtually identical 
parameter estimates. The other three estimators (OLS, ILS and FIML) generated virtually different 
estimates. Hence, four estimators OLS, ILS, FIML and L23 (LIML, 2SLS and 3SLS)] shall be compared 
in this analysis. 

Table 1 shows the SSR of estimates for sample size T = 20, 30, 40, 50, 60 over 150 replications. 
The coverage of the sample sizes T considered here is believed to be in conformity with the generally 
acceptable small sample size for empirical studies. The SSR are presented on equation basis under both 
levels of multicollinearity considered for the estimators. The best estimators are those with the least 
SSR. 

 
Table 1: SSR of Parameter Estimates over 150 replications 

Sample 
Size T 

Multi-
collinearity 

OLS L23 ILS FIML 
EQ1 EQ2 EQ1 EQ2 EQ1 EQ2 EQ1 EQ2 

20 
Low 101.11 13.80 805077 26758 1877 7195 37390 2573 
High 81.22 56.63 315746 1469 18.33 7062 246232 293.27 

30 
Low 95.29 103.09 871069 75015283 2399 9110 106671 365188 
High 146.63 23.56 24182206 18442 2379 9157 450827 33554 

40 
Low 175.90 30.20 10659819 7379 3061 11853 65180910 1.26E+8 
High 187.97 37.32 27743929 271568 2829 11105 27412 4430170 

50 
Low 202.69 30.00 2821906 16782 3396 13276 8.7E+11 1.95E+8 
High 170.84 41.00 1481103 2025531 3599 14009 24580 225.97 

60 
Low 294.46 556.19 701312 947817 4049 16049 528438 2378 
High 202.06 203.85 480853 3907 4213 16343 110790 66203 

Source: Author’s compilation from estimation results 
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In Table 1 the first entry 101.11 represents the OLS SSR for equation 1 under low 
multicollinearity for sample size T = 20 over 150 replications. The same process is repeated for the 2 
equations, over 6 estimators and across 2 levels of multicollinearity. We further deduced that at both 
levels of multicollinearity, OLS performed best across different sample sizes as compared to other 
estimators in both equations. While ILS performed next to OLS across different sample sizes for 
equation 1, it did not produce good performance for equation 2. For equation 1, at both low and high 
multicollinearity, FIML and L23 turned out large SSR thereby displaying poor performance among the 
estimators. The SSR values for ILS at both level of multicollinearity increased progressively from 
sample size 20 to sample size 60. All other estimators did not exhibit any remarkable asymptotic effect.  

We evaluate the sensitivity of estimates by the six estimators to increase in the magnitude of 
multicollinearity. This is repeated for each of the five sample sizes. The objective of this evaluation is 
to examine the relative performance of the six estimators as different levels of multicollinearity. Thus, 
the SSR generated by the six methods were evaluated with a view to identifying the best on the basis of 
the following criteria: 
a) Best Performance: The best estimator is indicated followed by the least performers in parenthesis. 
b) Estimators with large SSR: These are arbitrarily set at SSR greater than 5000. 
On the basis of the above criteria, Table 1 is further summarized as in Table 2. 
 

Table 2: Performance of Estimators, viz-a-viz, Equations and Incidence of Multicollinearity using 
SSR for different sample sizes over 150 replications 

Sample 
Size 

Performance 
Multicollinearity (EQ1) Multicollinearity (EQ2) 

Low High Low High 

20 
Best Performer O (L23) O (L23) O (L23) O (L23) 
Large SSR L23F L23F IL23 I 

30 Best Performer O (L23) O (L23) O (L23) O (F) 
Large SSR L23F L23F IL23F IL23F 

40 
Best Performer O (F) O (L23) O (F) O (F) 
Large SSR L23F L23F IL23F IL23F 

50 Best Performer O (F) O (L23) O (F) O (L23) 
Large SSR L23F L23F IL23F IL23 

60 
Best Performer O (L23) O (L23) O (L23) O (F) 
Large SSR L23F L23F IL23 IF 

Source: Author’s compilation from Table 1. 
 

Using SSR, we evaluate the sensitivity of six estimators to change in the level of multicollinearity 
and increasing sample size T = 20, 30, 40 and 50 while replication is kept constant at 150. The objective 
of this evaluation is to examine the comparative response of the six estimators to change in the levels 
of multicollinearity and increase in sample size (asymptotic effect).  

The following observations were made on Table 2. For equation 1, OLS performed best at both 
levels of multicollinearity and across sample size, all other estimators with the exception of OLS turned 
out large SSR at the different levels of multicollinearity. Also, for equation 2, OLS performed best at 
both levels of multicollinearity and over all samples. 

Using the SSR criterion, for both equations, at both levels of multicollinearity and across sample 
sizes; OLS estimator recorded overall best performance among the six estimators considered. Only OLS 
estimator did not generate large SSR among the estimators. This observation is irrespective of the level 
of multicollinearity. Hence, asymptotically, OLS estimator performed better than the other estimators. 
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However, there is no remarkable asymptotic effect occasioned by the different levels of positive 
multicollinearity. 

 
4. Conclusion 

 
The SSR of parameter estimates criteria was applied to estimators generated over ten (10) experimental 
scenarios. The scenarios are: levels of positive multicollinearity (2 scenarios), sample size (5 scenarios) 
and replications (1 scenario). From our results, and as expected for just identified models, 3SLS, 2SLS 
and LIML yielded virtually identical parameter estimates. OLS, followed by ILS performed best at both 
levels of multicollinearity while LIML, 2SLS, 3SLS and FIML performed poorly. This is attributed to 
the fact that intra as well as inter equation effects of multicollinearity worsened the performance of 
system estimators compared to single-equation estimators which only confronted multicollinearity at 
inter- equation level in the model. Hence, Monte Carlo studies with intentionally or otherwise inclusion 
of exogenous variables that are inherently correlated would be based on the performance assessment of 
the six estimators on a poor foundation. It is our suggestion that such exogenous variables that will be 
used in simultaneous equation model estimation should be screened for the presence of multicollinearity 
in order to ensure the application of an appropriate estimator. 

Furthermore, there is no remarkable asymptotic effect occasioned by the varied level of positive 
multicollinearity imposed on the system. This is in agreement with the submission of Johnston (1991) 
that “increasing the size of a data that is plagued by multicollinearity by adding more of multicollinearity 
plagued data would not result in any remarkable asymptotic effect in parameter estimation”. 
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